基于周期极化钽酸锂晶体的光参变振荡器技术研究

魏星斌 彭跃峰 王卫民 陈兴无 王春华 谢 刚

(中国工程物理研究院应用电子学研究所,四川 绵阳 621900)

摘要 对基于周期极化钽酸锂(PPLT)晶体的光参变振荡器(OPO)技术进行了理论分析和实验研究,通过三波混频耦合波方程组,计算了 PPLT-OPO 的波长调谐曲线。分别研究了信号光单谐振结构(SSRO)和闲频光单谐振结构(ISRO)下,PPLT-OPO 的中红外激光输出特性。当 Nd:YAG 激光器输出的1.064 μm 激光抽运功率为 48 W,重 复频率为 5 kHz 时,SSRO 和 ISRO 输出的 3.9 μm 中红外激光功率分别为 5.78 W 和 5.07 W,相应的转换效率分别为 12%和 10.6%,ISRO 输出的 3.9 μm 激光的近场光斑分布和光束质量优于 SSRO 的输出结果。 关键词 激光器;中红外激光;光参变振荡器;PPLT 晶体;单谐振;可调谐 中图分类号 TN248.1 文献标识码 A doi: 10.3788/AOS201131.0614001

Research on Optical Parametric Oscillator Based on Periodically Poled LiTaO₃ Crystal

Wei Xingbin Peng Yuefeng Wang Weimin Chen Xingwu Wang Chunhua Xie Gang (Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang, Sichuan 621900, China)

Abstract The theoretical analysis and experimental research of the optical parametric oscillator (OPO) based on periodically poled LiTaO₃ (PPLT) crystal are presented. The wavelength tuning curves of PPLT-OPO are calculated through the coupling equations of the three-wave mixing. The output characters of signal singly resonant oscillator (SSRO) and idler singly resonant oscillator (ISRO) are studied. When the pump power of the Nd: YAG 1.064 μ m laser is 48 W with a repetition rate of 5 kHz, the output powers of 3.9 μ m laser from SSRO and ISRO are 5.78 W and 5.07 W, and corresponding conversion efficiencies are 12% and 10.6% respectively. The near-field distribution and beam quality of the 3.9 μ m laser from ISRO are better than those from SSRO.

Key words lasers; mid-infrared laser; optical parametric oscillator (OPO); periodically poled $LiTaO_3$ (PPLT) crystal; singly resonant oscillator; tunable

OCIS codes 140.3600; 190.4970; 190.4410; 140.3070

1 引 言

基于频率变换的光参变振荡器(OPO)是产生 3~5 µm 波段中红外激光的有效途径之一。OPO 技术是将约1µm 的激光,通过非线性效应转换成 宽调谐、高效率和高功率(或高脉冲能量)的中红外 激光。目前,中红外 OPO 已经获得了平均功率数 十瓦^[1~5]、单脉冲能量百毫焦量级的中红外激光输 出^[6],最高转换效率超过 70%^[7]。最近,基于准相 位匹配(QPM)技术的 OPO 成为国内外研究的热 点^[8],其中作为核心器件的周期性极化非线性晶体 的发展尤为迅速。QPM-OPO 可以利用非线性晶体 最大的极化系数,而且不存在走离效应,可以在整个 晶体长度内实现相位匹配,因此可以实现高效率、低 阈值的中红外激光输出。同时,可以人为地设计极 化周期,实现中红外激光波长的宽调谐。

目前,QPM-OPO 中应用较广泛、技术较成熟的 是氧化镁掺杂的周期极化铌酸锂(PPMgOLN)晶 体,其有效非线性系数大,通光范围宽,但较低的损 伤阈值一定程度上限制了其在高功率方面的发展。 周期极化钽酸锂(PPLT)晶体,与 PPMgOLN 晶体同 型,其抗激光损伤阈值相对较高,通光范围也更宽,并 且易于极化制作出较厚的晶体,因此在高功率中红外

作者简介:魏星斌(1984—),男,硕士,实习研究员,主要从事激光二极管抽运固体激光器技术方面的研究。 E-mail: wishingbeing@hotmail.com

收稿日期: 2010-11-17; 收到修改稿日期: 2011-01-20

激光领域存在巨大的发展潜力^[9]。目前,国内外在 PPLT-OPO方面已经开展了广泛的研究工作^[10,11], 已经获得了平均功率瓦级的中红外激光输出。

本文在理论上计算了 PPLT-OPO 的波长调谐 特性,实验上通过改变 PPLT 晶体的温度,获得了 可调谐的中红外激光输出,其调谐曲线与理论计算 结果基本相符。同时开展了采用信号光单谐振结构 和闲频光单谐振结构在输出功率、转换效率和光斑 分布等方面的对比实验研究。

2 波长调谐理论计算

OPO 中的三波混频过程需要同时满足能量守 恒和动量守恒(相位匹配)方程,分别为

 $\frac{1}{\lambda_{\rm p}} = \frac{1}{\lambda_{\rm i}} + \frac{1}{\lambda_{\rm s}},\tag{1}$

 $\frac{n_{\rm p}(\lambda_{\rm p},t)}{\lambda_{\rm p}} - \frac{n_{\rm i}(\lambda_{\rm i},t)}{\lambda_{\rm i}} - \frac{n_{\rm s}(\lambda_{\rm s},t)}{\lambda_{\rm s}} - \frac{1}{\Lambda(t)} = 0, (2)$

式中λ_p,λ_i,λ_s分别是抽运光波长、闲频光波长和信 号光波长,t为温度,n_p,n_i,n_s分别是抽运光折射率、 闲频光折射率和信号光折射率,是波长与温度的函 数,Λ为非线性晶体的极化周期。PPLT的折射率 方程有多种理论拟合结果^[12,13],其中与实验结果较 符合的折射率方程为

$$n_{e}(\lambda,t) = \left\{ A + \frac{B + b(t)}{\lambda^{2} - [C + c(t)]^{2}} + \frac{E}{\lambda^{2} - F^{2}} + \frac{G}{\lambda^{2} - H^{2}} + D\lambda^{2} \right\}^{1/2}, \qquad (3)$$

式中A = 4.502483, B = 0.007294, C = 0.185087,D = -0.02357, E = 0.073423, F = 0.199595, G = $0.001, H = 7.99724, b(t) = 3.483933 \times 10^{-8} (t + 10^{-8})$ $(273.15)^2$, $c(t) = 1.607839 \times 10^{-8} (t + 273.15)^2$, 由于 PPLT 晶体的热膨胀系数较小,计算中将极化周期 Λ 近似为不随温度变化的常量。由以上方程组可知,要 获得调谐的中红外激光输出,可以通过改变抽运光波 ${\rm K} \lambda_{\rm a}$ 、极化周期 Λ 和晶体温度 t 来实现对闲频光波长 λ;和信号光波长λ、的调谐。PPLT-OPO参变光波长 随抽运光波长的调谐曲线如图1所示,其中以晶体温 度 t=25 °C,极化周期 $\Lambda=29 \ \mu m$ 为例。由图 1 可知, 当抽运波长从 1.0~1.1 μm 变化时,闲频光波长的调 谐范围为 3.44~4.06 μm,如图中实线所示;而信号 光波长的调谐范围为 1.41~1.51 μm,如图中虚线所 示。通常而言,抽运光的波长是固定的,或者无法实 现如此宽波段的调谐,因此常常选择 PPLT 晶体极化 周期和温度调节的方式来实现参变光波长的调谐。 PPLT-OPO 参变光波长与晶体极化周期的关系曲 线如图 2 所示,其中以晶体温度 t=25 C,抽运波长 $\lambda_p=1.064 \mu m$ 为例。由图 2 可知,当 PPLT 晶体极 化周期从 25~33 μm 变化时,参变光波长的调谐范 围为 1.34~5.15 μm ,当极化周期为 32.6 μm 时,闲 频光和信号光的波长调谐曲线重合,此时获得简并 波长 2.128 μm 的激光输出。通常而言,采用极化 周期对参变光波长的调谐,需要在 PPLT 晶体中极 化出多个分离的周期,实验过程中通过移动晶体位 置,使 OPO 过程在不同的极化周期区域内完成。 实验操作较为复杂,且不能实现波长的连续调节。 因此,在实验研究中采用更为方便的温度调谐方法, 可实现参变光波长连续、高精度的调谐。

图 1 抽运波长调谐曲线图

图 2 极化周期调谐曲线图

Fig. 2 Tuning curve with the grating period

由以上理论分析可知,PPLT-OPO 的输出波长 与抽运光波长、晶体的极化周期和工作温度相关,在 忽略热效应的情况下,与抽运功率强度无关。因此, 为了获得较好的波长稳定性,需要解决 OPO 中存 在的热问题,并保持晶体温度分布的均匀性。

3 实验研究

OPO的谐振腔通常有单谐振和双谐振两种结构,而单谐振结构又分为信号光单谐振结构(SSRO)和闲频光单谐振结构(ISRO)。理论分析和

实验研究表明单谐振 OPO 的转换效率和稳定性优 于双谐振 OPO,但其出光阈值高于双谐振 OPO。 利用 PPLT-OPO 实验装置,开展了 SSRO 和 ISRO 的相关实验研究,主要比较了 SSRO 和 ISRO 在中 红外激光输出特性方面的区别。

实验装置如图 3 所示。平面腔镜 M1 与 M2 之 间构成了声光调 Q 的 Nd: YAG 激光器,其输出的 高重复频率 1.064 μ m 激光经耦合系统调整光斑大 小后 抽运 PPLT-OPO。PPLT 晶体 的尺 寸 为 1 mm×10 mm×40 mm,极化周期约为 29 μ m,理论 计算表明,采用 1.064 μ m 激光抽运时,室温下该周 期的 PPLT 晶体输出的中红外激光波长为 3.9 μ m, 相应的信号光波长为 1.463 μ m。PPLT 晶体放置 于温控炉内,通过改变晶体的温度来实现参变光波 长的调谐输出。温控炉的调谐范围为室温到 200 °C, 温控精度可达 0.1 °C。平面腔镜 M3 和 M4 构成了单 谐振 OPO 的谐振腔,其中 M3 对 1.064 μ m 激光高 透,对 1.3~1.6 μ m 激光和 3.6~4.0 μ m 激光高反。 而 M4 的膜层参数根据采用信号光单谐振和闲频光 单谐振的结构而有所不同,采用 SSRO 时, M4 对 3.6~4.0 μ m激光高透,对 1.3~1.6 μ m激光的反射 率约为 75%,对 1.064 μ m激光高反;而采用 ISRO 时, M4 对 1.3~1.6 μ m激光高透,对 3.6~4.0 μ m激 光的反射率约为 50%,对 1.064 μ m激光高反。 PPLT 晶体的两端面均镀有 1.064 ,1.3~1.6 和 3.6~4.0 μ m激光的增透膜。

图 3 单谐振 PPLT-OPO 实验装置图

Fig. 3 Experimental setup of the singly resonant PPLT-OPO

实验测量得到的 PPLT-OPO 输出波长与晶体温 度的关系曲线如图 4 所示。图中的圆点为实验测量 值,曲线为理论计算结果,实验结果与理论计算基本 相符,最大误差不超过 10 nm,这些误差来源可能有: 极化周期沿光轴方向的非均匀分布、晶体折射率方程 的不精准性、晶体内热效应导致的热膨胀和温度不均 匀性、以及光谱仪测量误差等。由图 4 可知,当 PPLT 晶体温度从室温到 180 ℃变化时,PPLT-OPO 输出的 中红外闲频光的波长调谐范围为 3.9~3.75 μm,相 应的信号光波长调谐范围为 1.463~1.485 μm,其中 红外激光的调谐精度可达 0.1 nm/0.1 ℃。

室温下,信号光单谐振和闲频光单谐振结构时, 输出的 3.9 μ m 中红外激光功率与抽运功率的关系 曲线如图 5 所示。由图 5 可知,采用 SSRO 结构时 (虚线)3.9 μ m 激光的输出功率比 ISRO 时(实线) 的输出功率更高,出光阈值也更低。当 1.064 μ m 激 光重复频率为 5 kHz,抽运功率为 48 W 时,SSRO 和 ISRO输出的 3.9 μ m 激光功率分别为 5.78 W 和 5.07 W,转换效率分别为 12%和 10.6%,斜效率分别 为 17.1%和 15.8%,转换效率主要受到 PPLT 的有 效非线性系数以及晶体生长质量的影响。但两种谐 振腔下,PPLT-OPO 输出的信号光 1.46 μ m 和闲频

光 3.9 μm 的总功率差别并不大,主要的差别在于 中红外闲频光所占总输出功率的比例。根据光子数 守恒,理论上 3.9 μm 激光应占总输出功率 27.3%, 而采用 ISRO 时,3.9 μm 激光所占比例明显小于理 论值。主要原因是,3.9 μm 激光在谐振过程中存在 一定的损耗, PPLT 晶体在长波段的吸收系数大于 短波长近红外波段的吸收系数。

由于 PPLT 晶体的损伤阈值明显高于 PPMgOLN 晶体,因此允许采用较小的抽运光斑以 提高抽运功率密度、减小阈值功率和提高转换效率。 同时 PPLT 晶体在高抽运功率下损伤的危险性也 降低,具有输出高功率中红外激光的潜力。

PPLT-OPO 在运行过程中呈现出不同的颜色, 这些可见光是由一些其他的非线性效应造成的。测 量 400~1000 nm 波段的光谱,发现这些非线性效 应主要有抽运光的倍频、信号光的倍频、抽运光与信 号光的和频、抽运光与闲频光的和频等。而对于信 号光单谐振和闲频光单谐振的结构,这些非线性效 应的相对强弱有所不同,因此 OPO 谐振腔呈现出 不同的颜色。当采用 SSRO 时,还发现了信号光的级 联光参变转换过程,部分信号光作为抽运光转换为两 个新波长的中红外激光,级联双光参变转换过程可以 表述为:1.064 μ m→3.9 μ m+1.46 μ m,1.46 μ m→ 2.14 μ m+4.6 μ m。图 6 为室温下,SSRO 的中红外 光谱图,三个中红外激光的中心波长分别为 2.14,3.9 和 4.6 μ m。适当地增加抽运功率密度,这样的级联 光参变转换过程更强。而采用 ISRO 时,并没有发现 这样的二次光参变转换。采用 PPMgOLN 晶体,对 类似的双光参变转换过程已开展了较为深入的研究 工作^[13]。

除了以上在输出功率和光谱特性方面的不同外, SSRO和 ISRO输出的中红外激光的近场光斑分布和 光束质量方面也有所差别。当 1.064 µm 激光的抽运 功率为 48 W 时,SSRO和 ISRO输出的 3.9 µm 中红 外激光的近场光斑分布如图 7 中的(a),(b)所示。采 用刀口法测量束腰前后不同位置处 3.9 µm 激光的光

斑大小,再经过光束传输方程拟合,可以得到相应的 3.9 μm激光光束质量^[14]。虽然这种光束质量的测量 方法存在一定的误差,但在不同的抽运功率下,ISRO 输出的 3.9 μm激光光束质量都优于 SSRO 的结果, 这是由于 ISRO 中 3.9 μm激光的谐振性保证了其光 束质量。

图 7 3.9 μm 近场光斑分布图。(a) SSRO,(b) ISRO Fig. 7 Near-field intensity distribution of 3.9 μm laser beam. (a) SSRO, (b) ISRO

4 结 论

研究了基于 PPLT 晶体的光参变振荡器的波 长调谐特性,比较了 SSRO 和 ISRO 的不同输出特 性。当声光调 Q,Nd:YAG 激光器输出的1.064 μm 激光的抽运功率为 48 W,重复频率为 5 kHz 时, SSRO 和 ISRO 输出的 3.9 μm 中红外激光的功率 分别为 5.78 W 和 5.07 W,转换效率分别为 12%和 10.6%,ISRO 输出的 3.9 μm 中红外激光的光束质 量优于 SSRO。调节 PPLT 晶体的温度从室温到 180 ℃时,中红外闲频光的波长调谐范围为 3.9~ 3.75 μm,通过测量其他波段的光谱,还发现了其他一 些非线性光学效应。由于 PPLT 晶体的抗损伤阈值 比 PPMgOLN 晶体的更高,通光范围更宽,因此在高 功率中红外激光方面将具有巨大的发展潜力。

致谢 感谢南京大学赵刚教授等提拱的 PPLT 晶体与折射率方程。

参考文献

- 1 Peng Yuefeng, Wang Weimin, Wei Xingbin *et al.*. Highefficiency mid-infrared optical parametric oscillator based on PPMgO:CLN[J]. Opt. Lett., 2009, **34**(19): 2897~2899
- 2 Yuefeng Peng, Xingbin Wei, Weimin Wang *et al.*. High-power 3.8 μm tunable optical parametric oscillator based on PPMgO: CLN[J]. Opt. Commun., 2010, **283**(20): 4032~4035
- 3 Wei Xingbin, Peng Yuefeng, Wang Weimin et al.. High-power MgO:PPLN optical parametric oscillator[J]. Acta Optica Sinica, 2010, 30(5): 1447~1450

魏星斌,彭跃峰,王卫民 等.高功率 MgO:PPLN 光参变振荡器 [J].光学学报,2010,**30**(5):1447~1450

4 Martin Schellhorn, Marc Eichhorn, Christelle Kieleck *et al.*. High repetition rate mid-infrared laser source [J]. *C. R. Physique*, 2007, **8**(10): 1151~1161

- 5 Da-Wun Chen, Todd S. Rose. Low noise 10-W cw OPO generation near 3 μm with MgO doped PPLN[C]. Conference on Lasers & Electro-Optics, 2005, CThQ2: 1829~1831
- 6 Wei Xingbin, Peng Yuefeng, Wang Weimin *et al.*. 2 μm pulsed laser with 100 mJ intracavity KTP optical parametric oscillator [J]. *Chinese J. Lasers*, 2010, **37**(11): 2762~2765
 魏星斌,彭跃峰,王卫民等.百毫焦腔内 KTP 光参量振荡 2 μm 脉冲激光器[J]. 中国激光, 2010, **37**(11): 2762~2765
- 7 Y. Hirano, S. Yamamoto, H. Taniguchi. Highly efficient and high power 2 μm generation with PPMgLN OPO[C]. Proc. CLEO, Baltimore, Maryland, 2001; CFH2, 579
- 8 Yang Dingzhong, Jiang Peipei, Chen Tao *et al.*. PPMgLN-based high power optical parametric oscillator pumped by a pulsed fiber laser[J]. *Chinese J. Lasers*, 2010, **37**(1): 34~37 杨丁中,姜陪陪,陈 淘等. 基于周期性畴极化反转掺镁铌酸锂 晶体的脉冲光纤激光器抽运的高功率光参量振荡器[J]. 中国激 光,2010, **37**(1): 34~37
- 9 Lü Xinjie, Zhao Gang, Li Guijun et al.. Mid-infrared laser with 1.2 W output power based on PPLT[J]. Science China Physics, Mechanics & Astronomy, 2010, 53(4): 638~642
- 10 M. Katz, P. Blau. Mid-IR OPO operating near room temperature based on vapor-transport equilibrated periodically poled stoichiometric LiTaO₃ [C]. Lasers and Electro-Optics, 2007;CThL5
- 11 N. A. Barboza, R. S. Cudney. Improved Sellmeier equation for congruently grown lithium tantalite[J]. Appl. Phys. B Lasers and Optics, 2009, 95(3): 453~458
- 12 Wang Cuiling, Li Dehua, Li Jian. Disperion of the output wavelength in PPLT-OPO practically[J]. Jiangxi Science, 2007, 25(2): 132~134,186
 王翠玲,李德华,李 建. PPLT 光参量振荡实际输出波长偏差 分析[J]. 江西科学, 2007, 25(2): 132~134,186
- 13 Xingbin Wei, Yuefeng Peng, Weimin Wang et al.. Wavelength tunability of tanden optical parametric oscillator based on single PPMgOLN crystal [J]. Chin. Opt. Lett., 2010, 8 (11): 1061~1063
- 14 Peng Yuefeng, Xie Gang, Wang Weimin *et al.*. Intracavity optical parametric oscillator high-repetition-rate 2 μm laser with 46 W output power[J]. *Chinese J. Lasers*, 2009, **36**(1): 33~36 彭跃峰,谢 刚,王卫民等. 46 W 腔内光参量振荡高重复频率 2 μm 激光器[J]. 中国激光, 2009, **36**(1):33~36